

Technical Data

長鎖 DNA 抽出専用ゲルカセット 「High Pass Plus*」の 製品評価試験

※自動 DNA 断片ゲル抽出装置 Blue Pippin 専用です。

背景

ロングリードの次世代シーケンサでは、短鎖DNA断片を排除し、長鎖DNA断片を効率良く回収することが、シーケンスの成否に大きな影響を与えます。

BluePippinの "High-Pass" DNAサイズセレクションは、数kbp~数十kbp以上の長鎖 DNA断片分離、回収に有効な手段として用いられてきました。

「High Pass Plus」は、High Pass DNAサイズセレクションで、より短時間かつ高収量を実現するために開発されたHigh Pass DNAサイズセレクション用ゲルカセットです。

本テクニカルノートでは、High Pass Plusカセットを用いたHigh Pass DNAサイズセレクションが従来法 (High-Pass) とどのように異なるのか評価しました。

評価項目

- ① BluePippinでのラン時間
- ② 異なるサンプル、異なるインプットDNA量での回収量・回収率

製品仕様

	ゲルカセット	今回の評価で用いた BluePippin設定 (Cassette Definition)	製品の特徴と違い
従来法 (High-Pass)	Pippin Gel Cassete 0.75% (Sage Science, BUF7510)	0.75% DF Marker S1 high-pass 15-20 kb	 ゲルが細く、長い 泳動距離が長く、分離能が良い。特定サイズをピンポイントで取りたい時に有用 溶出ウェルの容量が40 µL 15 kbp以上の分離・回収におよそ4~5 h
High Pass Plus	High Pass Plus Gel Cassete (Sage Science, BPLUS10)	15 kb High Pass Plus Marker U1	 ゲルが太く、泳動距離が短い構造 High Pass Plus専用のCassette Definition(プログラム) によるサイズセレクションにより、長鎖DNAを高収量で回収 溶出ウェルの容量が80 µL 15 kbp以上の分離・回収におよそ2 h 30 ~ 3 h

使用機器と使用試薬

DNAサイズセレクション: BluePippin (BLU0001) ※ソフトウェアバージョン: v6.31-CD30
 Pippin Pulseゲル電気泳動: Pippin Pulse (パルスフィールド電気泳動パワーサプライ) (PPI0200)

Pippin Pulse用 10X KBB Buffer (KBB1001)

MidiPlus2 水平式電気泳動装置

(UVトレイ3種類、1mm厚 20サンプルコーム、UVトレイダム、電極コード赤黒) (ME1571015)

DNA染色: Midori Green Direct (NE-MG06)

◆ 使用したサンプル: 細胞由来精製ゲノムDNA (細胞gDNA)

組織由来精製ゲノムDNA (組織gDNA)

Pippin Pulse

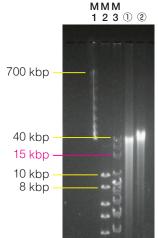
評価方法

細胞gDNAと組織gDNAを使用して15 kbp以上のサンプルを取得するため、BluePippinを用いてサイズセレクションを行った後に、Pippin Pulseを用いたパルスフィールド電気泳動にてバンドを確認した。

I インプットDNAの分布を確認するため、各サンプルをPippin Pulseを用いてパルスフィールド電気泳動を行った。

Pippin Pulse設定 (Pre-set protocols): 5-430 kb 泳動時間 : 15時間

泳動バッファー : 0.5×KBB buffer (Pippin Pulse泳動用バッファー)


Ⅱ 15 kbp以下の短鎖DNAを取り除くため、BluePippinを使用してサイズセレクションを行った。

Ⅲ 回収したサンプルが目的の長鎖DNAであることを確認するため、Pippin Pulseを用いてパルスフィールド電気泳動で確認した。(条件①と同じ)

IV 回収したサンプル1 μLをQubit 2.0フルオロメーター (Invitrogen: Q32866) で測定し、DNA濃度を求め、長鎖DNA回収量を計算した。

結果

I. Pippin Pulseゲル電気泳動によるインプットDNAの状態確認

「M1・・・NEB Lambda PFG Ladder (#N0341S) サイズマーカー M2・・・FastGene™ 1 kb DNA Ladder (#NE-MWD01)

M3 · · · Invitrogen 1 kb DNA Extension Ladder (#10511-012)

泳動サンプル $\begin{bmatrix} ① \cdots 組織gDNA & 300 ng \\ ② \cdots 細胞gDNA & 300 ng \end{bmatrix}$

サイズ分離する組織gDNA、細胞gDNAそれぞれには15kbp以下のバンドが存在する。

- 組織gDNA: 比較的gDNA分布がスメアで均一に分布しており、短鎖を多く含む。
- 細胞gDNA: gDNA分布が約40kbpに集中し、比較的短鎖の分布は少ない。
- → したがって、複数のDNAサイズ分布において、High Pass Plusの評価を行う。

0.75% アガロースゲル

(0.5×KBB Buffer 120ml, アガロース 0.9g)

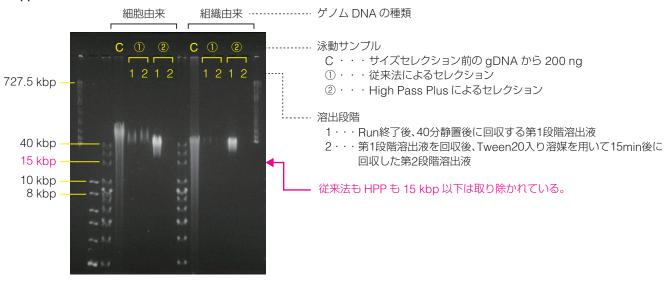
II. Blue Pippinにおけるラン時間の比較

	ラン時間	
従来法	4 h 45 m 00 s	約2時間差
High Pass Plus	2 h 31 m 40 s	11.75 = 3.1-3/-

High Pass Plusの方がラン時間が短く、迅速に分離、回収できた。

High Pass Plus Gel Cassete ※BluePippin にセットした状態

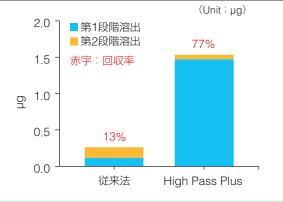
レーン1:マーカー レーン2:2 µg_Cell レーン3:5 µg_Cell レーン4:2 µg_Tissue レーン5:5 µg_Tissue



III. 異なるサンプル、異なるインプット DNA 量での回収量・回収率

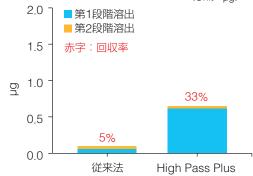
i) インプット量2 µg でのサイズセレクション

従来法とHigh Pass Plus (HPP) それぞれでインプット量2 μg で確認を行った


● Pippin Pulse ゲル泳動結果

● ゲノム DNA インプット量 2 µg のときの回収量の比較

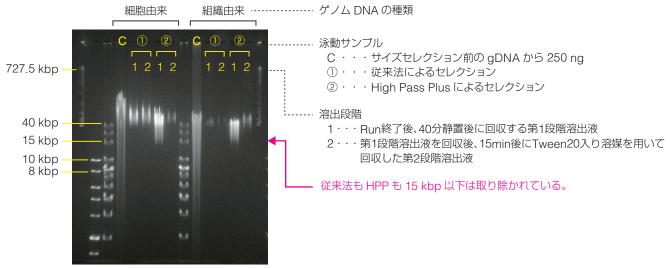
細胞gDNA回収量


	第1段階溶出	第2段階溶出	Total	回収率
従来法	0.118	0.146	0.264	13%
High Pass Plus	1.474	0.059	1.533	77%

組織gDNA回収量

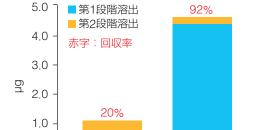
	第1段階溶出	第2段階溶出	Total	回収率
従来法	0.058	0.040	0.099	5%
High Pass Plus	0.624	0.027	0.651	33%

(Unit: µg)


- 従来法と比較して総収量が6~7倍増加した。
- 細胞gDNA回収率 (77%) は組織gDNA回収率 (33%) よりも高い回収率を示した。
 - → この結果は、組織gDNAが短鎖DNAを多く含むこと(結果 I)に合致し、本実験におけるサイズセレクションが異なるDNAサイズ分布においても機能していることを意味している。
- High Pass Plusは、第1段階溶出液で抽出DNAのほとんどが回収できた。

ii)インプット量5 µg でのサイズセレクション

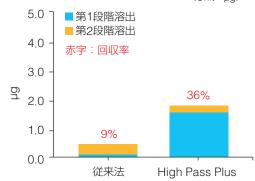
従来法とHigh Pass Plus (HPP) それぞれでインプット量5 μg で確認を行った


● Pippin Pulse ゲル泳動結果

● ゲノム DNA インプット量 5 µg のときの回収量の比較

細胞gDNA回収量

	第1段階溶出	第2段階溶出	Total	回収率
従来法	0.506	0.508	1.013	20%
High Pass Plus	4.368	0.225	4.593	92%



従来法

組織gDNA回収量

	第1段階溶出	第2段階溶出	Total	回収率
従来法	0.090	0.353	0.443	9%
High Pass Plus	1.540	0.251	1.791	36%

(Unit: µg)

サイズセレクションするゲノムDNAインプット量を5 µgに増やしても高収量で15 kbp以上のDNAを回収できた。また、High Pass Plusは、インプット量2 µgの条件と同様に、第1段階溶出液で抽出DNAのほとんどが回収できた。

High Pass Plus

(Unit: µg)

まとめ

0.0

- ① 従来法 (High-Pass) と比較して、High Pass PlusではBluePippinでのラン時間が2時間以上短縮できた。
- ② 異なるサンプル (細胞由来と組織由来)、異なるインプット DNA量 (2 μ g と5 μ g) いずれの条件でも、従来法 (High-Pass) と比較して High Pass Plus のほうが DNAの回収量が顕著に増加した。

補足情報

第1段階溶出時点のDNA回収率の比較

今回得られた回収量・回収率の結果において、第1段階溶出時点での回収率を比較した。 ※第1段階溶出時点のDNA回収率%=(1st 回収量/全体回収量)×100

ゲノムDNAインプット量	ゲルカセット	細胞gDNA	組織gDNA
2 μg	従来法	45%	59%
2 μg	High Pass Plus	96%	96%
5 μg	従来法	50%	20%
υ μς	High Pass Plus	95%	86%

補足情報まとめ

いずれの条件でも、従来法と比較して、High Pass Plusは第1段階溶出時点で高い回収率が得られた。

